Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems
نویسندگان
چکیده
منابع مشابه
Douglas-Rachford splitting for nonconvex feasibility problems
We adapt the Douglas-Rachford (DR) splitting method to solve nonconvex feasibility problems by studying this method for a class of nonconvex optimization problem. While the convergence properties of the method for convex problems have been well studied, far less is known in the nonconvex setting. In this paper, for the direct adaptation of the method to minimize the sum of a proper closed funct...
متن کاملPeaceman-Rachford splitting for a class of nonconvex optimization problems
We study the applicability of the Peaceman-Rachford (PR) splitting method for solving nonconvex optimization problems. When applied to minimizing the sum of a strongly convex Lipschitz differentiable function and a proper closed function, we show that if the strongly convex function has a large enough strong convexity modulus and the step-size parameter is chosen below a threshold that is compu...
متن کاملNonconvex Robust Optimization for Problems with Constraints
W propose a new robust optimization method for problems with objective functions that may be computed via numerical simulations and incorporate constraints that need to be feasible under perturbations. The proposed method iteratively moves along descent directions for the robust problem with nonconvex constraints and terminates at a robust local minimum. We generalize the algorithm further to m...
متن کاملRobust Nonconvex Optimization for Simulation-based Problems
In engineering design, an optimized solution often turns out to be suboptimal, when implementation errors are encountered. While the theory of robust convex optimization has taken significant strides over the past decade, all approaches fail if the underlying cost function is not explicitly given; it is even worse if the cost function is nonconvex. In this work, we present a robust optimization...
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2015
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-015-0963-5